Radiation-hardened space power converters that operate to 77 K introduced by MDI

SHIRLEY, N.Y., 22 Aug. 2016. Modular Devices Inc. (MDI) in Shirley, N.Y., is introducing radiation-hardened power converters for cryogenic temperature operation -- particularly for spacecraft.

Aug 22nd, 2016
By Intelligent Aerospace staff
By Intelligent Aerospace staff

SHIRLEY, N.Y., 22 Aug. 2016. Modular Devices Inc. (MDI) in Shirley, N.Y., is introducing radiation-hardened power converters for cryogenic temperature operation -- particularly for spacecraft.

MDI has developed a triple-wall Dewar system for characterizing the parameters of candidate active and passive components at temperatures as cold as 77 degrees Kelvin.

A curve tracing program using LabVIEW software is used for data collection. The parametric changes obtained from these measurements are then incorporated into relevant SPICE models, allowing predictions of circuit block performance.

MDI has developed several power converter building blocks suitable for 77-degree-Kelvin power converters. Input voltages range from 5 volts DC from battery sources to 100 volts DC from satellite buses.

Output voltages from these circuit blocks are available from 1.2 to 28 volts DC. Power levels can be from 1 to 100 Watts. Also available are units that deliver 1 kilovolt or more, for propulsion or instrumentation.

Related: DC-DC converter for aerospace, defense, and civil aviation electronics applications introduced by Modular Devices

Space needs components that can withstand such temperatures, MDI officials say. Equipment operating temperature for many near Earth space applications fall well into the military range of –55 to 125 degrees Celsius. Electronics internal to a spacecraft can be limited to –10 to 40 C, while solar cells can be subjected to –60 to 95 C.

Yet for scientific missions to Mars and beyond, the relative magnitude of the sun’s radiation intensity, relative to that of Earth, diminishes to 43 percent on Mars, 3.7 percent on Jupiter, and 1.1 percent on Saturn.

The diminished solar radiation, although it may be augmented by planetary or other radiation, results in possible operating temperatures well below the standard military range.

Although these cold temperatures may be mitigated by a combination of heaters and insulation, this results in additional weight and power burdens.

Power components and systems have previously been researched and developed for such -195 C applications as superconducting magnet energy storage and superconducting microwave applications.

Related: Unmanned sensor and processing payloads proliferate

These mostly terrestrial applications tend to be high-power uses and also do not need to operate in the radiation effect environment of space.

Design constraints for cryogenic space power supplies include low quantity and typically unique custom requirements; limited or no published information on active and passive component performance at 77 degrees Kelvin; and bipolar transistors and IC’s not usable due to low emitter injection efficiency at 77 K, preventing use of industry-standard ICs.

The first item is an economic consideration; the second item can be overcome by testing and characterization of candidate components. However, the third item requires an entirely new approach to established power supply design.

Research and testing has shown that commercially available minority carrier devices (bipolar junction transistors, which are optimized for 300K operation, are not practically useful at 77 K. However, majority carrier devices, such as junction and insulated FETs, including MESFETs and HEMTFETs, can be used, provided their radiation performance is acceptable.

Related: Reliance on radiation-hardened and radiation-tolerant components

Two avenues of practical implementation for the active components exist. One is to build custom IC’s with either HEMTFETs or rad hard CMOS. The second is to use discrete components packaged in a volumetrically small hybrid microelectronic package. The latter approach, adopted by MDI, is much more economical and offers faster development times for unique or low quantity applications.

Component parts capable of ultra wide temperature operation are packaged in hermetic hybrid enclosures, connected with reliable mono-metallic wire bonding. This is combined with larger passive components on polyimide printed wiring boards.

For more information contact MDI online at www.mdipower.com.

Learn more: search the Aerospace & Defense Buyer's Guide for companies, new products, press releases, and videos

More in Avionics